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Abstract. A scaling description is obtained for thed-dimensional random field Ising model,
directly from the analysis of domains in a bar geometry. Wall roughening removes the
marginality of thed = 2 case, giving theT = 0 correlation lengthξ ∼ exp(Ah−γ ) in d = 2,
and for d = 2 + ε power law behaviour withν = 2/εγ , h∗ ∼ ε1/γ . Here,γ is one of four
rough wall exponents arising in the theoretical formulation. In space dimensionalityd = 2 the
analysis is substantiated by three different numerical techniques (transfer matrix, Monte Carlo,
ground-state algorithm). These provide for strips up to widthL = 11 basic ingredients of the
theory, namely free energy, domain size, and roughening data and exponents.

1. Introduction

The phase diagram and critical properties ofd-dimensional Ising ferromagnets in a random
field has long been a subject of great interest [1–14]. This is partly because the model can be
experimentally realized in space dimensionalitiesd = 2 and 3, owing to its correspondence
[15] with diluted antiferromagnets in a uniform field [16–28]. Apart from the experimental
connection, the random field problem in its own right has challenged theoreticians with
rather intricate questions, such as those concerning its lower critical dimension [1, 7–10],
the applicability of dimensional reduction [3, 4, 14] and the nature of the transition and
critical behaviour [11, 13, 14]. As is well known, the lower critical dimensiondl turns
out to be [9, 10] that originally suggested by domain wall arguments [1, 7, 8],dl = 2.
This implies a marginal behaviour at dimensiond = 2, and it has been argued [29–32]
that here domain roughening effects are important. This present paper provides a detailed
study based on this point of view, extending and complementing basic results presented
elsewhere [33]. We explore the consequences of a roughened domain wall picture, and
at the same time confirm its validity by observing characteristics of the basic ingredients
as well as consequent predicted behaviour in data from numerical studies. While some of
the analytical predictions below coincide with those from early work [30–34], our scaling
scheme allows for their rederivation in a clear way, with the basic physics always in the
foreground.
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The domain analysis is most conveniently made in a bar geometry. The dependence on
a bar widthL may be used to arrive at phenomenological scaling transformations. These
in turn give the phase diagram and critical properties. For low random field strengthh and
temperatureT , the domains span the bar width, and are well separated along the bar, so
the basic ‘flat wall’ description (without roughening) is very simple. It results, ford = 2,
in a zero temperature fixed point at which the field scaling is marginal. Adding domain
wall roughening breaks this marginality, and this ingredient is essential at and neard = 2.
Consequences are: (i) the bulk correlation length behaviourξ ∼ exp(A/hγ ) at T = 0 in
d = 2, and (ii) for d = 2 + ε the phase boundary joining theT 6= 0, h = 0 fixed point
to one atT = 0, h = h∗ ∼ ε(1/γ ) whereξ ∼ |h − h∗|−2/εγ . γ is one of four exponents
occurring in theh andL dependence of the wall roughening free energy and characteristic
scale, and is predicted to beγ = 2 in the two-dimensional lattice.

This description has been here tested by direct numerical investigations in the bar
geometry ford = 2 (strips). This is carried out by transfer matrix techniques and by Monte
Carlo analysis using a new thermalization technique [35]. In addition, we use data from a
max-flow algorithm for constructing ground states [36] which has been adapted for strips.

The domain description involves free energyF and domain size4 as well as roughening
characteristics. The largest eigenvalue of the transfer matrix gives accurate numerical data
for F , and bothF and 4 are available from the Monte Carlo analysis, for comparison
with the theory. The wall roughening affects bothF and4, but its characteristics are most
directly seen in measures of the wall profile itself. These and their associated exponents
are best provided by the ground-state algorithm. The resulting comparisons of theory and
numerical data give a very complete test of the theoretical description and convincing
support for its validity.

The outline of the paper is as follows. In section 2.1 the domain picture is introduced and
the flat wall theory is provided atT = 0 for the free energy, domain size, and correlation
length of bars, and via phenomenological scaling, for the bulk criticality. Section 2.2
generalizes the flat wall description to low temperatures, and section 2.3 describes the
numerical approaches and the comparison of free energy and domain size data with flat
wall theory. Section 3.1 describes the domain wall roughening atT = 0, for lattice and
continuum models via a simple approach and a field theory. First, a single ‘decoration’
is discussed, then decorations on all scales, to provide the modified free energy and
domain size, and hence the scaling and criticality. This description is generalized to low
temperatures in section 3.2 and compared with the numerical domain size and roughening
data, including exponents, from the ground-state algorithm in section 3.3. Section 4 states
the main conclusions of the paper.

2. Flat wall

2.1. Zero temperature theory

2.1.1. Introduction. In this section, we establish the domain wall description of the random
field Ising model (RFIM) by takingT = 0 and assuming flat walls. The results of this simple
case are very good in certain ranges of dimensionality, but they indicate also where a more
comprehensive picture involving roughening (to be provided in section 3) is required.

We obtain the dispositions of walls by minimizing an energy which is discussed below.
The resulting domain size is then used in a phenomenological (finite-size) scaling scheme
to provide the renormalization group (RG) transformation and hence the critical properties.
Both these steps are most easily carried out in the bar geometry discussed below.
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2.1.2. The domain picture.Following Imry and Ma [1] we suppose that the field
contribution to the energy of a domain goes likeh

√
V whereV is the number of spins

within the domain andh is the standard deviation of the field distributionP , assumed to
have zero mean. The energy change per domain due to the broken bonds is proportional to
the perimeter of the domainA; so

F(T = 0) = nd(2JA − c0h
√

V ) (1)

wherend is the number of domains. HereA and V represent an average perimeter and
volume measurement for all the domains. The basic ferromagnetic energy−2JNq (q ≡
coordination number of the lattice) is neglected throughout this paper. The constantc0 is
of order unity and represents both the statistical fluctuations and the selection effects of the
domains. We describe the origins of this constant, and determine its value, in section 2.3.2.

We have chosen the strip geometry in which to apply the zero temperature free energy (1)
for the following reasons: (i) convenience for application of finite-size scaling procedures,
(ii) amenability to domain wall arguments, and (iii) we wish to later make contact with
transfer matrix calculations. Thus we choose a bar geometry(Ld−1 × ∞), to represent a
d-dimensional system. Our analysis gives a length scale4L(h) which diverges like the
correlation lengthξL(h) at a fixed pointh∗. We can then determine the bulk critical
properties via an RG equation of the formh → h′ = R(h) which arises from the
phenomenological finite-size scaling ansatz

ξL(R(h))

L
= ξbL(h)

bL
. (2)

Standard RG procedures provide, fromRb(h), the critical condition and exponents.
By assuming that atT = 0 the only scaling variable ish/J (and for T 6= 0 the only

additional coupling to be rescaled isT/J , see below), we are taking the traditional view
that it is only the variance of the random field distribution that matters. Other quantities,
e.g. higher moments of the distribution, might possibly be considered, such as has been
done in studies of dilute systems [37]. In not doing so, the system’s evolution in parameter
space is undoubtedly restricted. However, we expect the restricted evolution to provide the
dominant generic behaviour in the present case.

2.1.3. The zeroth-order theory.Given the strip geometry described above, the leading
order modification of the ferromagnetic ground state is a splitting of the system intond

domains. These domains are taken to have flat walls that span the widthL of the strip and
are of typical length4L, as shown in figure 1. For this picture to be consistent we need
4L � L, which holds ifh is sufficiently small. The lattice constant is set to unity. We
may write the excess energy of this domain state (atT = 0, equal to the Helmholtz free
energy) as

F(T = 0) = nd(2JLd−1 − c0h
√

4LLd−1) (3)

wherend = N/4L. The equilibrium free energy is found by extremalizing with respect to
4L:

4L = Ld−1

(
c0h

4J

)−2

. (4)

Applying the phenomenological scaling equation (2) gives an RG equation forh:

h′ = hb(2−d)/2. (5)



7412 E D Moore et al

Figure 1. The bar geometry, showing the flat domain walls that separate regions of up and
down spins. The average domain size4L is the average of the4is.

This implies that there is a fixed point ath = 0 which is unstable ford < 2 and stable
for d > 2. See [34] and references therein for early derivations of this. Thus, ford < 2
the critical exponentν = 2/(2 − d) for the unstable fixed point ath = 0. At d = 2 the
scaling fieldh is marginal. Higher-order terms in the free energy, however, can break this
marginality. The wall roughening decorations described in section 3 achieve this.

2.1.4. The correlation length atT = 0. In a bar geometry, the correlation lengthξL

controls the exponential decay of the configurationally averaged correlation function. It is
easy to show (assuming independently randomly distributed flat domain walls), thatξL is
related to the domain size4L by

ξL =
[

ln

(
1

1 − 2/4L

)]−1

. (6)

For large4L this givesξL = 4L/2, a proportionality to be intuitively expected.
Assuming a flat wall picture,ξL, of the RFIM on a strip can actually be found exactly

at T = 0 (for a binary distribution of random fields). This generalizes the work of Farhi
and Gutmann [38] for the one-dimensional RFIM.

The key is to consider the connected correlation function

χil = 〈σiσi+l〉 − 〈σi〉〈σi+l〉 (7)

where angled brackets denote the usual thermodynamic average andσi andσi+l are any two
spins in columnsi and i + l, respectively. Owing to the discrete, binary field distribution
one may view the random field configuration on a strip of widthL as a random walk in
1 + 1 dimensions [38].

At T = 0 the thermodynamic average becomes an average over the possible ground
states of the system. The fact that the ground state is degenerate is due to the discrete(±h)

field distribution used here; for a continuous distribution it can be shown [39, 40] that the
ground state is unique, thusχil ≡ 0.

The details of the calculation thus suggested are presented in appendix A, with the end
result that, for small fieldh, one has:

ξL = 1

L ln cos(π/(2J/h + 2))

= 2L

(
2J

πh

)2

+ 16π2

h
+ O(1). (8)
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It is easy to generalize these arguments to higher dimensions via the replacementL → Ld−1.
Then (8) agrees to highest order inh with our earlier result for theT = 0 smallh correlation
length (from combining (4) with (6)). However, this result came from an analysis of
the connectedcorrelation function, whereas our prior analysis applied to thedisconnected
correlation function. Although the correlation lengths derived from these two quantities
should diverge in the same manner, they may differ by a multiplicative constant (e.g.c0).
Indeed, this turns out to be the case in section 2.3.

Although this calculation also assumes a flat wall scenario, it should be accurate when
ξL � L and is exact forL = 1.

2.2. Low-temperature theory

The extension of the domain wall analysis to non-zero temperature requires the construction
of an entropy to be used in the minimization of the free energyF = U − T S, in order to
determine the characteristic lengths for phenomenological scaling. In the low-field, low-
temperature limit we can use the well separated strip-spanning domain pictures developed in
the previous section. For the zeroth-order (flat wall) description, the entropy is quite trivial,
corresponding to the number of ways of laying down flat domain walls with an average
spacing4L = N/nd:

S0(4L) = ln

(
N

nd

)
= N

[
ln(4L − 1)

4L

− ln(1 − 4−1
L )

]
(9)

with kB = 1 and using Stirling’s approximation. The free energy generalizing (1) toT 6= 0
is then

F = nd(2JLd−1 − c0h
√

4LLd−1) − T S0(4L). (10)

Extremalizing with respect to4L gives the following equation for the domain size

−2JLd−1 + c0h

2
L(d−1)/24

1/2
L + T ln(4L − 1) = 0. (11)

The various limits of this equation are

4L =
(

4J

c0h

)2

Ld−1 T = 0

4L = 1 + exp

(
2JLd−1

T

)
h = 0. (12)

As a check on equation (12), we investigate the low-temperature behaviour of the zero-field
Ising model. By using this form for4L in equation (2) we get the recursion relation for
T/J

(T /J )′ = 2Ld−1(T /J )

2(bL)d−1 − (ln b)(T /J )
. (13)

This has a fixed point atT = 0 which is unstable ford 6 1 and stable ford > 1, in
the latter case consistent with a finiteTc. In d = 1, (12) gives the usual pure Ising result
ξ ∼ exp(2J/T ).

Thus, in d = 1 the two scaling variables (scaling like a length) are exp(2J/T ) and
(from (5)) h−2/(2−d). In d = 1 the correlation length can then be written in the crossover
form

ξ = e2J/T φ(h2 e2J/T ) (14)



7414 E D Moore et al

whereφ(x) → ca or cb/x for x → 0 or ∞, respectively, withca, cb constants.
For d > 1 the stability with respect to temperature of the(T , h) = (0, 0) fixed point

means that no crossover form then applies at lowT , h, but insteadh2/(2−d)T 1/(d−1) is
invariant under scaling. Such stability also implies that the thermal scaling has little
influence on the lowT , low h critical behaviour ford > 1. Nevertheless, thermal effects
contained in (10) and (11) can substantially modify the behavour of the free energy and
domain size in this regime, masking the field dependences more significant for the RG
scaling. So (10) and (11) will be required for interpretations in the next section, where
numerical techniques are used to confirm the basic scaling picture so far discussed.

2.3. Numerical evaluation

2.3.1. Introduction. The most obvious test of the theory is on its final scaling predictions
for the bulk system criticality. However, this is difficult since it requires the investigation
of a system large enough to show the bulk critical behaviour. It is much easier to apply the
numerical techniques to the finite-size strip geometry, as is done here, and to investigate the
non-critical ingredients from which the scaling transformation is built, and hence establish
the applicability of the basic flat wall procedure.

Three techniques have been found to be successful, with results reported below: a
transfer matrix calculation, a modified Monte Carlo simulation, and a ground-state algorithm.

The transfer matrix method is appropriate to the strip geometry and can, in principle,
provide the phenomenological RG transformations directly and very precisely, as has been
exemplified for many low-dimensional lattice systems, particularly those with non-random
transfer matrices.

Very accurate results have also been obtained for the random bond Ising model and
a modification of those techniques is used here [41]. Because of the quenched disorder
present in such models (and in the RFIM), the first (dominant) Lyapunov exponent of the
transfer matrix product gives the average free energy of the strip, which is one of the two
key ingredients in our domain wall analysis. The other ingredient is the domain wall size
or correlation length. Typically, the correlation length is provided by the TM approach via

ξL = −1

ln(λ1/λ0)
(15)

whereλ0 andλ1 are the largest and second largest eigenvalues, respectively. However, this
relation gives themost probablecorrelation decay [42], which need not be the same as the
averagecorrelation decay. In fact, the correlations may follow quite complex distribution
functions [42], and the difference between ‘most probable’ and ‘average’ decays becomes
especially important when the effective interactions may differ in sign, such as in spin
glasses or random field problems [42, 43]. For this reason, the comparison with transfer
matrix data will be restricted to the free energy.

Monte Carlo simulation is the second technique used. The usual equilibriation problems
set by critical slowing down are here compounded by the effects of very large energy barriers
in situations(d 6 2) where the criticality is atT = 0. The problems are partly alleviated
by the strip geometry, particularly ind = 2, where characteristic lengths of orderh−2 (see
(4)) replace exponentially large correlation lengths of the bulk system (see (48) below).
However, the equilibriation times remain excessively long, and a new algorithm [35] was
devised and employed to markedly improve thermalization times. Briefly, this algorithm
continues the ideas of multigrid methods with self-adjusting renormalizations of parameters
to allow for changes to be made on all length scales via moves of blocked spins. This permits
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the calculation of average energies, domain sizes, and correlation lengths, for comparison
with the analytic predictions.

The final numerical technique used was an exact algorithm [44] to construct the ground
states for both binary and Gaussian random-field configurations. Ground states for models
with arbitrary random fields and arbitrary but not frustrated exchange interactions may be
found in polynomial time by mapping the optimization problem to a min-weighted-cut
problem on an associated graph [45]. A new min-cut max-flow algorithm [44] was first
implemented by Ogielski [36] to demonstrate the practicability of this method. We here
apply the algorithm to the strip geometry, and hereafter refer to this method as the ‘max-
flow algorithm’. From these data it was possible to obtainT = 0 properties including
average energy, domain size, as well as domain wall roughening characteristics which will
be discussed later.

2.3.2. Transfer matrix. The simulations were done on strips of widthL = 2, . . . , 9 and
lengthN = 105 and a binary random field distribution. Periodic boundary conditions were
applied in the ‘finite’ direction whereas all possible trial state vectors were applied to termini
of the strip at each end of the ‘infinite’ direction. This procedure was then repeated for
three different realizations of the random field configuration, and the resulting free energy

F/N + 2 = −kT ln λ0 (16)

averaged over these realizations and over the 2L trial vectors. The average was calculated
in the root-mean-square manner, and the associated error in the free energy was calculated
as the rms error in the free energy at each random field configuration.

We wish to test the zeroth-order flat wall theory (section 2.1), in which the free energy
at very low temperature andd = 2 is

F0 = −Nc2
0h

2

8LJ
. (17)

To this end, we have generated free energy dataFTM for L ∈ (2, 7) at T = 0.1J . For
lower temperatures, the elements of the transfer matrix become larger than the computer
can handle. If the strip width is much larger than 7 the run times become unreasonably
long. Nevertheless, these strip widths are adequate for our purposes.

We plot ln(FTM/J ) versus ln(h/J ) for various strip widthsL. Straight lines of slope 2
are expected, and this is indeed the case, as demonstrated in figure 2.

Straight line fits to these plots yield the slopes given in table 1. We include the value
of the Q statistic, which is a measure of the probability that a value ofχ2 as poor as the
value we have found should occur by chance.Q is always in the range(0, 1) and a value
of Q > 0.1 usually denotes a reliable fit [46].

The agreement is acceptable, with increasing accuracy at largerL. However, close
inspection of figure 2 shows that there appear to be systematic errors. This is an indication
of the importance of higher-order decoration effects and finite-temperature effects, occurring
even at these low temperatures and low fields.

We now attempt to obtain a best value for the constantc0, so that we can compare the
predicted free energy with the numerics, and extract subdominant features noted above. We
defer a comparison of estimates ofc0 obtained by different numerical procedures to the end
of section 2.3.

A simple fit of the numerical free energy to equation (17) is statistically unreliable, and
gives residualL dependence inc0, and other artifacts. We concluded that this was due to
the data being atT = 0.1J and not zero temperature. For smallh, the leading temperature
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Figure 2. Log–log plots of the excess free energy atT = 0.1J .

Table 1. Fits to the free energy data from the transfer matrix.

L Slope Error Q

2 1.792 0.007 0.0004
3 1.848 0.009 0.33
4 1.857 0.009 0.79
5 1.885 0.011 0.96
6 1.901 0.012 0.95
7 1.904 0.012 1.00
8 1.945 0.015 1.00
9 1.958 0.014 1.00

dependence can be very significant. Indeed, the zeroth-order finite temperature theory of
(10) and (11) implies that for large4L in a two-dimensional lattice

F = −N
c2

0h
2

8LJ

[
1 + O

(
T

LJ
ln

[
L

(
4J

c0h

)2
])]

. (18)

To fit the free energy data properly, we need a free energy form applying for allh, T

as long as4L is large. This can be obtained by reparametrizing the relations (10) and (11)
giving the finite temperature flat wall theory, provided the theory is correct for large4L.
Using h, T small, 4L large,d = 2, the approximate forms to reparametrize are the excess
free energy

F
NL

≡ f = −c0h

2
√

4LL
(19)

and the extremalizing equation(
c0hL1/2

4T

)
4

1/2
L + 1

2
ln

(
4L exp

(−2JL

T

))
= 0. (20)

This leads to an implicit equation forf as a function ofh, T , L

LJ

T
= ln

( −c0h

2f
√

L

)
− c2

0h
2

8f T
(21)

which is solved forf numerically, thus determiningc0.
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As well as obtainingc0, we can test whether non-Gaussian effects occur for smallL,
or perhaps the flat wall description breaks down for largeL by varying the range of the
fit. We usedT/J = 0.1, 0.2 and 0.3, withh ∈ {0.05, 0.25}. Over this range ofT andh,
the zeroth-order theory predicts large correlation lengths at least> 10L for even a liberal
estimate ofc0, which should make (21) applicable. The results are presented in table 2.

Table 2. Fits of the free energy to the transfer matrix data at finite temperature.

L c0 χ2 Q

2–9 1.774 457 10−41

2–7 1.761 375 10−37

2–5 1.745 288 10−32

4–9 1.846 81 0.686

The fits improve by a large amount when the lowerL values are dropped (Q = 0.686
is remarkably good). We attribute this to non-Gaussian selection effects at lowerL values,
where the domains do not sample over as many field configurations as a domain of the
same linear extension at largeL.

The valuec0 ≈ 1.85, found here does not agree with that(c0 = π) predicted in
section 2.1.4 by a random walk analysis of the disconnected correlation function. As
explained there, this is due to the different correlation functions used in obtaining this
(non-universal) constant.

The largeQ statistic gives much confidence in the form ofF predicted from the flat-
wall ansatz. Figure 3 illustrates the quality of the agreement between the transfer matrix
data and the prediction of equation (21) usingc0 = 1.85. While the fits were done for
h ∈ (0.05, 0.25), the predicted free energy seems to lie within error for a much larger
regime, especially for larger strip widths. ForL = 8, 9 this happens all the way out to
h = 1.0J .

Transfer matrix data were also taken forh/J ∈ (1, 6) and low T . Typical results are
shown in figure 4. Forh/J ∈ (0, ≈ 2), F goes roughly likeh2. This dependence is
close to that predicted by the flat-wall theory, with increasing accuracy as the strip width
increases, which is important for our scaling discussion of critical effects. Forh/J > 4
the field strength is greater than the energy cost of flipping a spin, so all the spins align
with their local field. ThusF is linear in h, with unit slope. In the intermediate region
h/J ∈ (≈ 2, 4) F crosses over from quadratic to linear dependence onh, due to a rapidly
decreasing domain size.

The transfer matrix approach has thus provided a rigorous test of the energetic arguments
of sections 2.1.3 and 2.2, with excellent agreement over the range tested.

However, a comparison of quantities like correlation length, domain size, etc, would
be a more rigorous check on the physics underpinning the results. Secure results on these
lengths are not so far available from the transfer matrix method and so we turn to the Monte
Carlo analysis.

2.3.3. Monte Carlo. Using the block Monte Carlo algorithm described in [35] we
now investigate other physical quantities which are directly accessible via our theoretical
framework, but not easily obtained by transfer matrix analysis.

The average energy: First, we compare the configurationally averaged energy found by
the Monte Carlo routine to that predicted by the flat wall results (the first term in (10)),
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Figure 3. A comparison of the free energy as determined by the transfer matrix data, and that
determined by our low-temperature theory using the fitted constantc2

0 = 3.406, atT = 0.1J

andT = 0.3J .

which involves4L as given by numerical solution of (11). The theoretical and Monte Carlo
data points are shown forL = 1 and 4 in figure 5.

Fitting the data to the theoretical form (3) givesc0 = 1.75± 0.05. The theory agrees
quite well with the Monte Carlo data for low temperature and field strength, as the criterion
for the validity of the theory breaks down when4L ≈ L. Yet, there is agreement within
error up toT = 0.7J even forh = 0.5J whenL = 4. This is a further indication that the
zeroth-order theory captures the essential flavour of the RFIM.

The domain distribution and correlation length–domain size relationship: A key
assumption in our theory was that the domain walls were randomly placed on the strip.
This can be tested either by investigating the domain size distribution, which should then
be Poisson, or by exploring the predicted relation between domain size and correlation
length.

Since the standard deviation and mean of a Poisson distribution are the same, we have
evaluated these two quantities forL = 1, 2 and 4 forh 6 0.5J andT 6 J . In every case
they are found to be the same within error (never more than 5%). While this result is not
definitive, it is very suggestive of a Poisson distribution.

Equation (6) expresses the relation between the correlation lengthξL, and the domain
size4L, for randomly distributed walls. Figure 6 shows a test of this relationship forL = 2.
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Figure 4. The free energy as a function ofh for T/J = 0.1 andL ∈ (2, 7). These data were
determined by the transfer matrix method, and illustrate the three regimes ofh dependence.

Figure 5. The average energy of theL = 1 andL = 4 RFIM, as determined by both the Monte
Carlo algorithm (data points) and the zeroth-order theory (lines). The symbol♦ corresponds to
h = 0 , − to h = 0.1J , � to h = 0.2J and× to h = 0.5J .

Very similar plots arise forL = 1 and 4. In each case, the agreement with the predicted
form is remarkable.

We have also analysed the probability distribution of domain sizes forL = 1, 2, 4;
h = 0, 0.2J andT up toJ . The results forL = 1 are shown in figure 7. The size distribution
is very close to exponential (consistent with the domains being Poisson distributed) for
h = 0, at least for smallerL’s and larger temperatures. However, whenh = 0.2J and
T = 0.4J the distribution seems to decrease at lower4. This is evidence fordomain
wall repulsion, which is expected at higher fields when the domain walls begin to approach
and undergo appreciable roughening (see section 3). Forh < J , however, this effect is
only noticeable over about the lower 2% of the domain size distribution. Otherwise, the
distribution is still exponential. So, the Poisson assumption appears to be approximately
correct, and gives the correct behaviour at large domain sizes. Thus, the flat wall entropy
should still be a valid starting point.



7420 E D Moore et al

Figure 6. The correlation lengthξL plotted against the domain size4L for L = 2. We also
include the predicted relation between these quantities for comparison. Plots forL = 1, 4 are
essentially the same.

Figure 7. The distribution of domain sizes according to the measure4L as found by the Monte
Carlo routine whenL = 1.

The domain size itself: In this section, the domain size4L, predicted by (11) is compared
with that measured by the Monte Carlo routine.

The results are shown forL = 1 and 4 in figure 8. The flattening of the data at lowT ’s
is due to the finite length of the simulated system; data in the flattening regime are discarded
in quantitative comparisons. The constantc0 was determined by a best fit to the data at
T = 0.1J , where we might expect the flat-wall theory to be accurate. We getc0 = 1.

The comparison of the predictions of (11) to the domain size data is relatively poor. The
reason for this is not well understood, but may be due to non-Gaussian effects at smaller
strip widths. However, we do get reasonable agreement (discarding flattened data) at the
lowest of temperatures, and for largerL. These are the conditions that matter most for
scaling, where the correlation length and domain size atT = 0 and largeL is of particular
importance. These are discussed below using data from the ground-state algorithm.

2.3.4. Max-flow algorithm. We have used the max-flow algorithm [36] to find ground
states and ground-state properties for random field configurations generated from binary or
Gaussian distributions. On large scales, both distributions are expected to give the same
results, but there are differences, discussed in section 3.3, for small system or domain
sizes. These differences were not as pronounced in the finiteT data obtained from the
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Figure 8. The domain size4L plotted as a function of temperature forL = 1 andL = 4.
The data points represent the Monte Carlo data whereas the lines show the result of solving the
flat wall theory. The symbol♦ corresponds toh = 0, − to h = 0.05J , � to h = 0.1J , × to
h = 0.2J , andM to h = 0.5J . The flattening of the data at lowT is due to the finite length of
the simulated system.

transfer matrix and Monte Carlo routines described above. In the present case, it becomes
advantageous to use results from the Gaussian distributions as we now do.

These data were generated on strips of widthL = 2, . . . , 11 and lengthN = 103,
averaged over 100 independent random field configurations. The error bars shown represent
the statistical variations in the data when averaged over these runs (as opposed to the width
of the distribution of a variable quantity like the domain size). As the computational time
required to generate a ground state via this algorithm grows liken3, and the run time for
an n = 11× 103 system was on order 10 days, it was not possible to significantly increase
the system size beyond this limit.

The typical domain size4L is shown in figure 9. Also shown is a comparison with the
theoretical4L obtained from the random walk analysis (section 2.1.4) of the correlation
lengthξL using a simple fitted constant of proportionality to convert this to a domain size.
A quantitative assessment of the quality of the agreement is provided by the correlation
coefficientr = 0.9968 and the statisticχ2 = 0.426. The fit gives a value ofc0 = 1.98±0.02.

Figure 9. The typical domain size atT = 0 from the max-flow algorithm. The points represent
the data from the max-flow algorithm, and the full curves represent the theoretical form with a
fitted multiplicative constant.
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Also considered was a fit to just theh−2 leading term in the smallh expansion of the
theoretical4L. This corresponds to (4) (i.e. to the basicT = 0 theory) and differs from
the full 4L by O(1/h), significant except in the lowh limit. The comparison of fits to this
reduced form with those to the full4L shows that if fields up toh = 2.0J are included,
the fit to the reduced form gives aχ2 = 4.215. This shows a much poorer quality of fit
than that to the full theoretical form. The neglect of theO(1/h) terms is one of the sources
of the reduced quality fit observed in the basic theory analysis of the Monte Carlo domain
size data (section 2.3.3). However, it is difficult to incorporate these higher-order terms in
a consistent finite-temperature theory. This shortcoming disappears in the smallh regime
important for scaling.

We get four differing numerical estimates ofc0, namely: 1.85 from transfer matrix data
for the free energy; 1.75 ± 0.05 from Monte Carlo average energy; 1 from Monte Carlo
domain sizes; 1.98±0.02 from the ground-state max-flow algorithm. Each error bar quoted
reflects uncertainties in the fit ofc0 as measured by a specific method; it does not account for
systematic errors that may be present, owing to approximations inherent to that particular
method. The scatter among estimates is most likely due to this latter source, though at
present we are unable to elaborate on this point.

This completes the comparisons of numerical analyses with the basic theory. The
conclusion is that this theory provides an excellent account of the free energy and average
energy; and an account of the domain size and correlation length which differs from the
numerical data by effects whose origin is becoming clear, particularly so at low temperature.
These effects are the domain wall repulsion due to non flat wall effects (wall roughening),
seen in the domain distribution of section 2.3.3, and the (understood)O(1/h) and other
terms by which the basic theory differs from the random walk one. Thus it is necessary to
extend the theory by including wall roughening effects, which is done in the next section.

3. Domain wall roughening

3.1. Theory

3.1.1. Introduction. The effect of domain wall roughening on the free energy, and hence
the correlation length is estimated here by a decoration method. Initially, for completeness
we rederive expressions which are valid for individual decorations on a given scalea

(presumably in a bulk system) [8, 47, 48]; our ultimate goal is to relate the superposition
of these to the finite width of our systems, via the upper cutoffL, and thus investigate
their effect on the RG transformations: as it turns out, new terms arise which break the
marginality ofd = 2. Hence, we can derive the scaling behaviour ind = 2, and the critical
point and critical exponents of the RFIM ind = 2+ε. All these calculations are carried out
at zero temperature for simplicity, and will be later generalized to finite temperature. It is to
be noted from the outset that the picture of decorations upon decorations to be developed in
section 3.1.3 implicitly allows for the existence of interface overhangs (though not ‘bubbles’)
when one considers the lattice case, or even in the continuum provided that there is sufficient
curvature (see figure 10).

For a single decoration base lengtha and heightb(a) the associated excess volumeδV

and the excess areaδA are, on ad-dimensional lattice

δV = bad−1 δA = 2(d − 1)bad−2. (22)

In a continuum, assuming axial symmetry, we denote the excursion of the domain wall
from its mean position asz = bf (r/a) wheref (0) = 1. Then, the excess surface area in
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Figure 10. The process of placing decoration upon decorations, such that decorations occur
on all length scales. This process has a cutoff length scale when the size of the decorations
becomes an order of the lattice constant.

the free energy (1) is

δS(a, b) =
∫ 2

0
dr rd−2

√
1 +

(
b

∂

∂r
f

( r

a

))2

− 1


→

{
b2ad−3 if b � a

bad−2 if b � a.

Similarly, the excess volume is

δV (a, b) =
∫ a

0
dr rd−2bf

( r

a

)
∼ bad−1. (23)

We assume that the domains are sufficiently large and the domain wall fluctuations
sufficiently small (i.e.4L � b) that the fluctuations in the wall may be considered as
uncorrelated from those in the body of the domain. Thus, we may treat the decoration as a
separate entity from the bulk of the domain and apply the free energy (1) independently to
it.

We define the wandering exponentζ , the free energy fluctuation exponentθ , and
associated exponentsγ andκ by the following equations

δF ∼ hγ aθ (24a)

b ∼ hκaζ . (24b)

Below, we proceed to the calculation of these four exponents for both lattice and continuum
systems.

Substituting (22) into equation (1) the zero temperature excess free energy is, for the
lattice

δF(T = 0) = 4J (d − 1)bad−2 − c0hb1/2a(d−1)/2. (25)

Minimizing with respect tob we get

b =
(

c0h

8J (d − 1)

)2

a3−d . (26)

The excess free energy is then

δF(a) = −c2
0h

2

J

a3−d

16(d − 1)
. (27)
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For the continuum, minimizing (1) with respect tob yields the following relations

b ∼
(

h

J

)2/3

a(5−d)/3 if b � a (28)

b ∼
(

h

J

)2

a3−d if b � a. (29)

For self-consistency, in the continuum case we must require that (28) holds at large
scalesa only for d > 2 and thath/J is not much larger than unity, or thatd = 2 and
h/J � 1. Similarly, equation (29) only holds ifd < 2. We now check the assumption
that the wall decorations are decoupled from the bulk of the domains, i.e. thatb(L) � 4L.
Using the form of4L given by the zeroth-order decorations (4) and the solutions forb(L)

given in equations (28) and (29) above we conclude thath/J must satisfy

h

J
�

{
L(d−2)/2 if b � a

L(d−2)/2 if b � a.
(30)

In either case then, for largeL andd > 2 there is a generous regime forh/J which satisfies
the assumption. Whend < 2, if L is finite we can always findh/J sufficiently small that
(30) is satisfied, but the allowed regime forh/J decreases asL increases.

For the continuum the free energy is thus given by

δF(a) ∼


− h4/3

J 1/3
a(d+1)/3 if d > 2

−h2

J
a if d 6 2 andh � 1.

(31)

The above results have been derived previously [7, 29, 30, 47, 48]. Though the fact
that lattice and continuum exponents differ seems surprising at first, it has been shown by
Nattermann [47, 48] that ford 6 3, if one considers the appropriate relationships between
microscopic and mesoscopic parameters the results from both approaches coincide when
considered on sufficiently large scales.

3.1.2. Full field theory and comparisons.A more complete treatment of this problem
allows the entire shape of the interface to be determined by the system, and not just the
height to width ratio as in the previous treatment. This will provide a check on the results
of the previous section, as well as more detailed information on the average equilibrium
shape of the domain walls, and on proportionality constants.

A functional equation can be established for the shape of the interface by rewriting the
free energy of the domain wall as a functional of the wall profileP . The equilibrium wall
profile is then found by extremalizing this free energy via the Euler–Lagrange equation.
Details of the calculation are found in appendix B. The results of this section, which hold
only in d > 2, are:

(1) the first-order free energy fluctuation is given by

Fwall(L) = −c̃

(
c0h

J

)4/3

L(d+1)/3 + O(h8/3) (32)

where c̃ is a positive numerical constant, thus showing that wall roughening is always
favourable ford > 2;

(2) the wall wandering height is

b ∼ h3/2L(5−d)/3 + O(h8/3). (33)
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We now compare the results from lattice theory, simple continuum ansatz and full field
theory. One sees that all the exponents of the simple continuum ansatz and the full field
theory agree ford > 2. The complete comparison between all three treatments is given in
table 3.

Table 3. Comparison of approaches to wall decoration problem.

d < 2 d > 2

Simple Field Simple Field
Lattice continuum theory Lattice continuum theory

ζ 3 − d 3 − d NA 3 − d (5 − d)/3 (5 − d)/3
θ 3 − d 1 NA 3 − d (d + 1)/3 (d + 1)/3
γ 2 2 NA 2 4/3 4/3
κ 2 2 NA 2 2/3 2/3

As mentioned above, the predicted exponents have been found previously; in the
continuum model, via other extensions of the Imry–Ma type argument done by Natterman
[12, 47, 48], and for the lattice in the work of Binder [30]. Grinstein [49], finds the same
values forγ , κ, andζ as we do, but findsθ = 1. It is also worth noting that the replica
symmetric approach of Parisi and Sourlas [50] for the continuous model gaveζ = (5−d)/2,
but the inclusion of replica symmetry breaking givesζ = (5 − d)/3 [51, 52]. Finally,
the lattice result is consistent with the results of transfer matrix calculations done in two
dimensions by Fernandezet al [53] and with numerical ground-state calculations reported
in section 3.3.

3.1.3. Decorations upon decorations.The decoration described in section 3.1.2 is (to
lowest order inh/J ), the most favourable twice differentiable form of the domain walls.
However, discontinuities may be a feature of the ‘true’ solution. We may incorporate such
discontinuities by allowing the decoration to be repeated on all length scales, following a
procedure of Binder [30]. Basically, having made a basic change in the shape of the domain
wall on scales of lengthL, one then looks at the domain wall on a length scaleL/n where
n > 1 is some arbitrary integer, whose choice, we hope, should not strongly affect the
results. HereL is the transverse width of the bar. If the random field is small, the wall
will be slowly varying on such a scale and may be viewed as a hyperplane, or to preserve
the simplicity of the discussion by takingd = 2, as a straight line. This straight line is
then decorated in the same manner as the original wall. This process is repeated on length
scales of orderai = L/ni , i = 2, 3, . . . until a cutoff length scale is reached (see figure 10).
Reverting to generald, this cutoff occurs at a stagek where the smallest length scale of
decorations is the lattice constant (unity), i.e.

min(ak, bk) = 1. (34)

From the results of the previous section, we know thatbk = c1(h/J )κa
ζ

k where c1 is a
constant. Asκ > 0, (34) becomesbk = 1 for smallh so the final level of decorations,k,
is determined by

ak = L/nk = c
−1/ζ

1 h−κ/ζ . (35)

This gives the cutoffk as

k =
ln L + 1

ζ
ln c1h

κ

ln n
. (36)



7426 E D Moore et al

This result should be approximately valid for largeL.
Finally, all the changes to the free energy from all the various decorations are summed

to arrive at a total decoration. At stagei we have decimated the length scale byni so there
are ni(d−1) decorations at this stage, and each gives a free energy contributionδF(L/ni).
Hence, the total free energy of all the decorations will be

δFTot(L) =
k∑

i=0

ni(d−1)δF
(

L

ni

)
(37)

with k as above.
In this way, then, we can estimate the effect of wall roughening on all length scales up

to L, and remove the restriction that the wall shape must be smooth. Such generalizations
are crucial to get the correct marginality breaking free energy, as we shall see.

3.1.4. Scaling and criticality ind = 2 and = 2 + ε. The preceding results can now be
used to construct the RG transformation ind = 2 + ε. This allows us to investigate the
marginality breaking effect of domain wall roughening in two dimensions, and to investigate
the behaviour of theh = 0 fixed point as we move away fromd = 2.

Using (37) and the free energy forms found in the previous sections, a full decoration
of the domain walls may be done in general dimensiond > 2. For the sake of generality
we will use the general form of the wall free energy given by (24a):

δFTot = −c̃

(
c0h

J

)γ

Lθ
k∑

i=0

ni(d−1−θ). (38)

From the values ofθ given in table 3, the summand is

ni(d−1−θ) =
{

ni((2d−4)/3) = 1 + i 2
3ε ln n continuum

ni(2d−4) = 1 + i2ε ln n lattice

for d = 2 + ε. To further simplify matters we define the coefficient

φ =
{

2
3 continuum

2 lattice.
(39)

Then, the total free energy of the wall decorations may be concisely written as

δFTot

J
= −c̃

(
c0h

J

)γ

Lθ

[
(k + 1) + εφ(ln n)

k(k + 1)

2

]
. (40)

This result may be compared both with that of Villain [7] and Grinstein and Ma [8] who
find δFTot ∼ h4/3L ln L for d = 2 using a continuum interface model, and with the result
of Binder [30] who findsδFTot ∼ h2L ln L in a 2d lattice calculation. Both these results
agree with (40) with the appropriate choice of the exponentsγ andθ (see table 3).

The wall decorations reduce the effective surface tension of the domains. As a result,
the average domain size will decrease. We can quantify this result by rewriting the free
energy of the entire strip as

F =
(

N

4L

)
(2JLd−1 − c0h

√
4LLd−1 + δFTot). (41)

Here, we used the flat wall result (3) as a model, but noted the fact that there is, on
average, a further contribution ofδFTot per domain wall from the decorations.
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Extremalizing this free energy with respect to4L gives the average domain size as

4L =
(

c0h

J

)−2

Ld−1

(
1 + δFTot

JLd−1

)
. (42)

As expected, the domain size is reduced by interface roughening.
This correction to the correlation length4L also has implications for the

phenomenological RG equation. This equation obtained from (2) with the use of (42)
and (6) is now quite complex, but it can be simplified by linearizing inε and using small
h/J . After some tedious algebra, one finds the following RG equation:

h′ = h

(
1 + chγ ln b

ln n
− ε

2
ln b

)
(43)

wherec ≡ c̃c
γ

0 and we have letJ = 1 for simplicity. This has an unstable fixed point at

h∗ =
(

ε ln n

2c

)1/γ

+ O(ε2)1/γ (44)

which remains in the smallh region of validity of our description sinceε is regarded as
small. The eigenvalue of (43) is given by

∂h′

∂h

∣∣∣∣
h=h∗

= 1 + 1

2
γ ε ln b + O(ε2) = b1/ν .

This yields the critical exponent

ν = 2

εγ
(45)

which characterizes the scaling of the bulk correlation length,ξ ∼ |h−h∗|−ν . The arbitrary
scale variablen disappears from the critical exponentν, which is a universal quantity,
though it remains through a weak logarithmic dependence inh∗ and other non-universal
quantities.

For d = 2 we must go back to equation (43) withε = 0:

h′ = h

(
1 + chγ ln b

ln n

)
. (46)

This is equivalent (at smallh) to

exp

(
ln n

γ c(h′)γ

)
= 1

b
exp

(
ln n

γ chγ

)
. (47)

This is the same form as the standard rescaling of a correlation lengthξ(h′) = b−1ξ(h), so
the correlation length is

ξ ∼ exp

(
A

hγ

)
(48)

close to the fixed pointh∗ = 0, whereA is the non-universal constant lnn/(cγ ).
The results of these calculations are summarized in table 4.
Here the exponent isγ = 4/3 for the continuum orγ = 2 for the lattice. Our results for

the continuum are identical to those given in [32]. This is because the fixed-point structure
of (43) is very similar to that found there from the scaling of the surface tension (while
ours comes from the phenomenological rescaling of correlation lengths). The lattice results
agree with those of [29, 30, 54].

Putting ε = 1 in (45) one gets, for the lattice,ν = 1 in unexpectedly good agreement
with recent Monte Carlo results ind = 3 [55], ν = 1.02 ± 0.06. Of course such an
extrapolation must not be given much weight, asε is assumed to be� 1 in the theory.
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Table 4. Main results of the flat wall analysis.

Dimensions Fixed point Bulk correlation length

2 h∗ = 0 ξ ∼ exp(A/hγ )

2 + ε h∗ = (
ε ln n

2c

)1/γ
ξ ∼ (h − h∗)−2/εγ

3.2. Low-temperature theory

The effect of the zero-temperature wall roughening on the surface tension is (by (41))
equivalent to the replacement ofJ by

J̃ = J + δFTot

2Ld−1
. (49)

Consequently, the low-temperature analyses given in sections 2.2 and 2.3.2 have to be
modified by the replacementJ → J̃ , in equations (10)–(14) and (20) and (21).

The roughening also affects the entropy since it increases the number of possible
configurations. The entropy change can be obtained crudely by a slight generalization
of the counting used to derive (37), or by a more complete analysis given elsewhere [56].

As remarked in section 2.2, the zeroth-order thermal scaling (13) is not marginal in
d > 1, and so the modifications just discussed do not change the RG thermal flow directions
for h small andd near 2. So theε-expansion results of section 3.1.4 can be combined with
those of section 2.2 to infer the flow diagrams shown in figure 11 ford = 1, 2, 2 + ε.
For d = 2 + ε this implies a second-order phase transition at the phase boundary shown,
inside which (i.e. at smallh, T ) long-range order occurs forh 6= 0. This is consistent with
previous renormalization group discussions [12, 34].

Figure 11. The RG flow diagram for the RFIM as predicted by our finite-size scaling analysis.

The extended theory outlined in the first two paragraphs above provides the low-
temperature free energy modifications produced by rough walls.

This suggests the possibility of distinguishing wall roughening effects by comparing
numerical data on free energy with this theory extended as just outlined. This comparison
has been made with the transfer matrix free energy data discussed in section 2.3.2. Despite
the excellent quality of the data, and their remarkably good agreement with the flat wall
theory, it was not found possible to extract wall roughening effects from them. This is
because the statistical fluctuations in the data, although extremely small, are nevertheless



Domain scaling and marginality breaking in RFIM 7429

Figure 12. The domain size as a function ofh/J at T = 0 determined by the max-flow
algorithm (data points), and the flat wall analysis (lines) for a binary field distribution.

greater than the roughening contributions in the ranges of parameters appropriate for the
validity of the theory (ensuringξ � L). So, we turn to other more sensitive comparisons.

3.3. Numerics: correlation and roughening characteristics from the max-flow ground-state
algorithm

This section describes the extraction of domain wall roughening characteristics from data
obtained using the max-flow algorithm for constructing ground states.

One comparison uses domain-size correlation length data, which are much more sensitive
than the free energy to domain wall roughening, particularly in wide strips because of the
crucial role of roughening in the marginal dimension ofd = 2. The other involves direct
measures of the wall wandering. These measures are the average over many walls, (for a
given h and base scaleL) of the maximum height (wandering excursion)bmax, or of the
root-mean-square heightbrms.

Both binary and Gaussian random field distributions were used. As expected, the
Gaussian distribution gives smoother dependences, and has provided the most useful
data. However, the binary results have some interesting features, as we now briefly
show. Figure 12 gives numerical data for the configurationally averaged domain size.
A ‘stepping’ of the data as a function ofh is apparent, particularly for smallerL. This
is predicted by the flat wall description (appendix A) equations (A6), (A8) since in (A8),
q = (2 + b(2JL)/hc)−1 involves the integer part functionb c. There is also a certain
discreteness implied in the use of the transfer matrix. For comparison, the flat wall
theory is shown in the figure. The flat-wall random-walk analysis also compares very
satisfactorily with corresponding domain size data (figure 9) from the Gaussian distribution.
Here, the data contain no steps. If one repeats the random walk analysis with a Gaussian
distribution, the ‘integer part’ function does not occur, and the transfer matrix becomes a
convolution operator. Since the eigenfunctions are again plane waves, the final result for
the correlation length is the same, except that it has no ‘integer part’ function, and thus no
‘stepping’. However, though the Gaussian distribution must therefore set the large length
scale behaviour, in energy (figure 3) and domain size (above) there can be real differences
for these quantities between binary and Gaussian cases at smaller scales.

The domain size data can be fitted to the flat wall theory or to the analysis including
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wall roughening (sections 3.1.3, 3.1.4). Equation (4) gives the basic flat wall description,
in which for strips(d = 2), 4L ∼ Lh−2, and one fitting coefficient(c0) occurs. The fuller
random walk version of the flat wall theory (section 2.1.4) is equivalent, for smallh/L, but
more generally it gives a4L different by a ‘discreteness factor’(1 + O(h/L)). The wall
roughening analysis instead corrects the flat wall4L by a factor(1 + O(hγ Lθ−d+1 ln L)).
This should be amalgamated with the discreteness factor evident from the RW analysis.
Then the domain wall roughening theory gives the best quality of fit to the max-flow data
on 4L. For instance, considering a Gaussian random field distribution, table 5 shows the
decreased statistical errorχ2 associated with the addition of this domain roughening term.
Even though this extra term provides an extra free constant to the fit(c = c̃c

γ

0 ), it does not
necessarily decreaseχ2. Indeed, it worsens the fit to the zeroth-order theory since the higher-
order ‘discreteness term’ has been neglected. When this term is ignored, the roughening
only has a correlation coefficient ofr = 0.218. However, when this discreteness term has
been included from the more complete random walk analysis, the wall roughening is seen
to decrease the value ofχ2. It then has a much more significant correlation coefficient of
r = 0.816.

Table 5. Results of fits to theT = 0 domain size data.

Flat domain walls Roughened domain walls

Zeroth-order Random walk Zeroth-order Random walk

χ2 4.215 0.607 4.447 0.404

The max-flow data in the wall decoration variablesbrms, bmax give much more conclusive
evidence for the roughening effects and provide quantitative estimates of exponents. Data
for theh-dependence ofbrms for L = 8 are shown in figure 16 for both binary and Gaussian
distributions. Again, the jagged character of the binary result is evident, even at this
moderately largeL. So the remaining discussion is confined to the Gaussian case. To
compare with the prediction (24b), a log–log plot of the Gaussianbrms versush is given
for L = 2, . . . , 11 in figure 15. A very similar plot is obtained also forbmax, though the
absolute size ofbmax is larger, by up to a factor of 4. The departure from linearity of
the log–log plot at smallh is almost certainly a lattice effect. That requiresb & 1, and
using e.g. (26) (withc0 = 1.8) to estimate whereb ≈ 1 suggests that (24b) should break
down for h/J . 5L−1/2, which is in qualitative agreement with what is seen. Similarly,
a breakdown of the simple theory giving (24b) is expected whenb (strictly bmax) becomes
comparable to4L, i.e. (using (26) and (4)) forh/J & 1.5. This L-independent cutoff is
consistent with the departures from linearity seen at the largest fields in the log–log plot.
The scaling window between the upper and lowerh departures is quite wide for the largest
Ls, and consequently they should give the most accurate field exponentκ from power law
fits to (24b) within the scaling window. The results, from bothbrms andbmax are shown in
figure 13 and are consistent withκ ≈ 2.1±0.3. Figure 14 shows theL-dependent prefactor
of hκ in brms andbmax. In each case, the prefactor is very close to linear inL in the larger
L scaling regime, consistent withζ = 1 in (24b). The behaviours seen in figure 15, and
in the corresponding plot forbmax, as well as the associated exponentsκ, ζ are therefore
consistent with the analysis in section 3.1.
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Figure 13. The wall roughening exponentκ as determined from power law fits tobrms and
bmax. For largeL, these tend towards 2.

Figure 14. The wall roughening termaζ as determined from power law fits tobrms andbmax.
For largeL, these tend towards a linear dependence onL, consistent withζ = 1, as shown by
the lines of best fit.

4. Conclusions

In this paper we have developed a domain scaling description for the random field Ising
model by exploiting a bar geometry. As in earlier work of Villain [7], Grinstein and Ma [8]
and Binder [30], the marginality of the basic flat-wall picture at the lower critical dimension
dl = 2 is removed by wall roughening effects (section 3). The resulting phenomenological
renormalization group transformation has been used to obtain the critical properties. In
particular, the special critical behaviour of the two-dimensional correlation length and the
phase diagram ind = 2 + ε have been given (section 3.1.4).

The wall roughening ingredient has its own scaling characteristics (the exponentsγ ,
θ , κ, ζ ) which have been here rederived using both a simple analytical method (following
Nattermann [47, 48]) and a field theoretic approach. These exponents have a direct bearing
upon the RG transformation and hence on the scaling properties.

An essential element to this study has been the support that numerical studies have
provided for the analytic description. The comparison between numerical data and analytic
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Figure 15. The root-mean-square domain wall width as a function ofh/J for various length
scalesL. The use of a log–log plot shows the scaling window where the plots are linear.

Figure 16. The rms domain wall width as a function ofh/J for L = 8. This plot emphasizes
the difference between the binary and Gaussian random field distributions, showing the stepped
nature of the former as more excitations become favourable at lowerh/J .

predictions was made in the strip geometry so that the critical ingredients of the theory
could be directly investigated. These ingredients include the domain size, the free energy,
and the roughening characteristics, as functions ofh, T and strip widthL.

The numerical approaches employed were transfer matrix and Monte Carlo techniques,
and a ground-state (max-flow) algorithm. The first two give free energy and domain size data
confirming the basic flat-wall picture through: (i) theh2/L dependence of theT = 0 flat-
wall energy at lowh, and its low-temperature generalization; (ii) the domain size distribution
and the correlation length–domain size relationship.

The numerical ground-state data, obtained via the max-flow algorithm, not only directly
verify the basic validity of the domain size predicted by the (flat wall) random walk analysis,
but they also provide evidence for the roughening effects in the domain size. The max-
flow data on the wall decoration variablesbrms, bmax are the most conclusive evidence for
roughening effects. They give power law scaling in a window of the size predicted by the
theory, sufficient at largeL to give quite accurate values for roughening exponents, in good
agreement with the (lattice based) theory.
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The conclusions is that the theory contains the correct ingredients, and the numerical
data provide quantitative confirmations of the way they enter into the theory.

We have not made corresponding numerical investigations of thed = 3 case, where it
is of course more difficult to obtain data for the range ofL’s we needed here. However,
we hope the present work may stimulate such an effort, which (e.g. using the ground-
state algorithm) could sort out the so far unresolved critical behaviour [13, 14]. Another
extension, presently under consideration, is to the kinetic behaviour, for which the free
energy scaling discussed here is an essential ingredient.
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Appendix A. Exact correlation length on strips at T = 0

We consider the connected correlation function

χil = 〈σiσi+l〉 − 〈σi〉〈σi+l〉. (A1)

At T = 0 the thermodynamic average becomes an average over the possible ground states
of the system.

In considering the ground state of the RFIM, one notes that even if the field is small, the
energy to create a domain wall, 2JL, can be accumulated from fluctuations in the random
field over large domains. Ind 6 2 theL dependences are such that this result persists in
the L → ∞ limit [1].

With this in mind, let us define the quantity

S(k, l) =
k+l∑
j=k

L∑
i=1

hij (A2)

where i labels the vertical coordinate on the strip, andj the horizontal one. Whenever
|S(k, l)| > 4JL, it is favourable to insert a domain wall at positionsk and k + l. When
we attempt to employ this algorithm on a variety of field configurations, one immediately
notices that the ground state is still not completely determined.

A region between two opposite random fields, and with endpointsk, j such that
S(k, j) = 0 (and j is the site closest tok when this is so) is a ‘floppy domain’ (FD)
in the sense that in an average over the ground states, the spins in these domains may point
up or down, and are not fixed like the spins in other regions (‘rigid domains’ (RD)).

There is increased degeneracy if 2JL/h is an integer, because the conditions for both
↑↓ and↓↑ FD can be simultaneously satisfied. To avoid the additional difficulties of this
case, we shall assume that 2JL/h is not an integer.

The degeneracy in the ground state gives rise to non-vanishing connected correlations.
Indeed, it is the FDs that contribute exclusively toχil . If either σi or σi+l is in an RD
then 〈σiσi+l〉 = 〈σi〉〈σi+l〉. Furthermore, if the two spins are in different FD, they are
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uncorrelated random variables, and their contribution toχil also vanishes. Thus, one need
only consider spins that are in the same FD.

We have three effects to consider.
(i) The probabilityW1(l̃) that there exists an FD of sizẽl > l.
(ii) Given thatσi is in an FD, the probabilityW2 that theσi+l is also in the FD.
(iii) The thermal average and the average over random field configurations subject to

the constraint that the spinsσi andσi+l are both in the same FD. We label this probability
W3.

We also introduce the variable

L =
⌊

2JL

h

⌋
+ 1

wherebxc denotes the integer part of the non-integerx.
We can view the random field configuration on a strip of widthL as a random walk in

1+ 1 dimensions. At each site along the horizontal direction of the strip, the walk changes
by a height equal to the columnar sum of random field values at that point. Using this view,
S(0, l) represents the height of the random walk atx = l.

If the aggregated change in height of the random walk ever reachesL then we have
accumulated enough parallel fields to form a domain. If there are regions between these
peaks where the change in height is zero, then these are FD.

In this random walk picture,W1(l̃) is the probability that the random walk returns to
the origin after taking̃l steps, which is known to fall off exponentially withl,

W1(l) ∼ exp

[ −l

ξL(L)

]
(A3)

whereξL(L) is a characteristic decay length to whose exact determination we shall return
in a moment.

From geometrical considerations,W2 ∼ 1/l. For the third probability, we note that the
average over ground states corresponds to an average over domain wall positions. Since
the number of places for a domain wall to be inserted between two spins separated by a
distancel goes likel, we could estimate the conditional probabilityW3 as∼ 1/l2. These
are only rough estimates, the probabilities depend also upon the ratioh/J . But we only
need here thel dependence, and the important feature ofW2 and W3 is their power law
decay inl. We conclude that the only exponential contribution is fromW1(l), and this gives
the exponential decay ofχ , so theξL(L) defined by (A3) is actually the correlation length.

Now W1(l̃) is the probability that a directed random walker in 1+1 dimensions returns
to the origin after̃l steps, without hitting walls at±L. We solve this problem by reference to
the transfer matrix formalism of random walks [57]. This involves writing down a transfer
matrix T (n, m) with n, m ∈ {1, 2, . . . ,L} which represents the probability that the random
walker makes a step from positionm to n. In terms of the RFIM, this means that

T (n, m) = Prob

( L∑
i=1

hij = (n − m)h

)
. (A4)

The leading eigenvalue of the transfer matrix,λ(L) is related to the survival probability by

W1(l) ∼ λ(L)l (A5)

so that the correlation length of equation (A3) is

ξL(L) = −1

ln λ(L)
. (A6)
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For L = 1, the transfer matrix is (using (A4)) tridiagonal and symmetric, with zeros on
the diagonal and 1/2 on the neighbouring off diagonals. We can generalize this result for
all L, by noting a general pattern in arow through the middle of the transfer matrix:

(i − j) . . . 4 3 2 1 0 + 1 + 2 + 3 + 4 . . .

L = 1 . . . 0 0 0 1
2 0 1

2 0 0 0 . . .

L = 2 . . . 0 0 1
4 0 2

4 0 1
4 0 0 . . .

L = 3 . . . 0 1
8 0 3

8 0 3
8 0 1

8 0 . . .

L = 4 . . . 1
16 0 4

16 0 6
16 0 4

16 0 1
16 . . .

...

The numerators of the elements follow the same pattern as the numbers in Pascal’s
triangle, and the denominators are simply 2L. This is due to the Gaussian nature of the
random walk wherebyTL(n, m) = [T1(n, m)]L. These matrices are all diagonalized by the
same type of vectors:

Φj = sin(jπq) (A7)

where the wavenumberq is chosen to be consistent with the boundary conditions of the
matrix, i.e.q = n/(L+1). The pattern of entries in the transfer matrix gives the eigenvalues
of these vectors as

λ = cosL(qπ). (A8)

Clearly, the largest eigenvalue is the one withq = q1 = 1/(L + 1). If h is small, thenL is
large andq1 is small so that equation (A6) gives the correlation length as

ξL = 1

L ln cos(π/(2J/h + 2))

= 2L

(
2J

πh

)2

+ 16π2

h
+ O(1). (A9)

Appendix B. Full field theory of domain interfaces

We use a(d − 1)-dimensional Cartesian coordinate system placed on the hyperplane where
the flat interface would have been. Then, the deviation of the domain wall from this
hyperplane is given by the functionP(x). Using the model of equation (1), this decoration
has a free energy atT = 0 of

F [P(x), ∇P(x)] = 2J

∫ √
1 + (∇P)2 dd−1x − c0h

√∫
P(x) dd−1x (B10)

where both integrals are over the hyperplane defined byxi ∈ [0, L]. This free energy is
minimized via the generalized Euler–Lagrange equation:

d−1∑
i=1

∂

∂xi

δF
δ(∂P (x)/∂xi)

= δF
δP (x)

. (B11)

Note that the right-hand side is a constant, and define it as

N0J = −c0h

4
√∫

P(x) dd−1x
. (B12)
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This leads to a rather complicatedd-dimensional differential equation.

N0 =
d−1∑
i=1

{
∂2
i P [1 + (∇P)2] − ∑d−1

j=1 ∂iP ∂jP ∂ijP

}
[1 + (∇P)2]3/2

. (B13)

Here,∂i ≡ ∂
∂xi

.
To simplify things we consider the isotropic solution, which only depends on the radial

coordinater2 = ∑d−1
i=1 x2

i .
Then, with∂rP (x) ≡ P ′(r) the isotropic equation becomes

N0 = ((d − 2)/r)P ′(r)(1 + P ′(r)2) + P ′′(r)
(1 + P ′(r)2)3/2

. (B14)

Note that this equation may alternatively be obtained by extremalizing an isotropic free
energy functional,

δF [P(r), P ′(r)] = 2J�

∫ √
1 + P ′(r)2rd−2 dr − c0h

√
�

∫
P(r)rd−2 dr. (B15)

Here

� = π(d−1)/2

((d − 1)/2)!
(d − 1) (B16)

is the area of the(d − 1)-dimensional unit ball. However, in the more general case the
isotropic solution is a member of the larger set of optimal solutions.

It may be checked by direct substitution that the solution to the wall decoration problem
encapsulated in equations (B12) and (B14) is a hypersphere of radiusR

P(r) =
√

R2 − r2 − P0 (B17)

whereR satisfies the requirement−1/R = N0. The constantP0 is determined by the choice
of the boundary conditionsP(r = L/2) = 0

P0 =
√

R2 −
(

L

2

)2

. (B18)

In addition, the constraint (B12) imposes the self-consistency relation

R2 = J 2(d − 1)24(δV )

c2
0h

2
(B19)

which we use to determineR(h). Here δV is the extra volume added by the decoration
δV = �

∫ L/2
0 P(r)rd−2 dr.

Thus, (B19) is difficult to solve forR(h). However, we are interested in the regime
h/J < 1 where we expect the decorations to be small(R � L) and we may expand in
powers ofL/R. To first order in 1/R the excess volume and area are

δV = �

R(d2 − 1)

(
L

2

)d+1

(B20)

δA = �

2R2(d + 1)

(
L

2

)d+1

. (B21)

Then, equation (B19) gives the equilibrium radius as

R =
(

c0h

J

)−2/3

L(d+1)/3

(
4�(d − 1)

2d+1(d + 1)

)1/3

. (B22)
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Inserting the first-order forms (B20) and (B21) evaluated at the equilibrium radius (B22)
into (B10) then gives the first order free energy fluctuation

Fwall(L) = −c̃

(
c0h

J

)4/3

L(d+1)/3 + O(h8/3). (B23)

Here c̃ is the numerical constant

c̃ =
[

�1/3

(d + 1)1/3(d − 1)2/3

] [−2−1/3 + 28/3

2(d+7)/3

]
(B24)

and is positive for alld > 1. This shows that wall roughening is always favourable for
d > 2.

Finally, the wall wandering height is

b ≡ P(r = 0) ∼ h2/3L(5−d)/3 + O(h8/3). (B25)
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